3/1

智源学者成果展示——人工智能的数理基础

作者 戴彧虹(中国科学院数学与系统科学研究院研究员、智源研究员)

GANs 相关的约束极小极大问题理论

中国科学院数学与系统科学研究院研究员、智源研究员戴彧虹等研究了来源于生成对抗网络 (Generative Adversarial Networks)、对抗训练 (Adversarial Training) 和多智能体强化学习 (Multi-Agent Reinforcement Learning) 中的约束极小极大问题,并在局部极小极大点 (Local Minimax Point) 的意义下给出了最优性理论。 特别地,在内层满足 Jacobian 唯一性假设下,证明了一阶和二阶必要性最优条件和二阶充分性最优条件:同时在对内层满足强正则假设下,证明了一阶必要性最优条件。

Yu-Hong Dai and Liwei Zhang, Optimality Conditions for Constrained Minimax Optimization, arXiv:2004.09730v1 (Accepted by CSAM), 2020.

Theorem 3.1 (Necessary Optimality Conditions) Let $(x^*, y^*) \in \mathbb{R}^n \times \mathbb{R}^m$ be a point around which f, h, g are twice continuously differentiable and H, G are twice continuously differentiable around x^* . Let (x^*, y^*) be a local minimax point of Problem (1.1). Assume that the linear independence constraint qualification holds at y^* for constraint set $Y(x^*)$. Then there exists a unique vector $(\mu^*, x^*) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ such that

$$\nabla_{y}\mathcal{L}(x^{*}; y^{*}, \mu^{*}, \lambda^{*}) = 0,$$

 $h(x^{*}, y^{*}) = 0,$ (3.4)
 $0 \ge \lambda^{*} \perp g(x^{*}, y^{*}) \le 0.$

For any $d_y \in C_{x^*}(y^*)$, we have that

$$\langle \nabla^2_{yy} \mathcal{L}(x^*; y^*, \mu^*, \lambda^*) d_y, d_y \rangle \le 0. \tag{3.5}$$

Assuming Problem (P_{x^*}) satisfies Jacobian uniqueness conditions at (y^*, μ^*, λ^*) and the Mangasarian-Fromovitz constraint qualification holds at x^* for the constraint set Φ , there exists $(u^*, v^*) \in \Re^{n_1} \times \Re^{n_2}$ such that

$$\nabla_x \mathcal{L}(x^*; y^*, \mu^*, \lambda^*) + \mathcal{J}H(x^*)^T u^* + \mathcal{J}G(x^*)^T v^* = 0,$$

 $H(x^*) = 0,$ (3.6)
 $0 < v^* \perp G(x^*) < 0.$

The set of all (u^*, v^*) satisfying (3.6), denoted by $\Lambda(x^*)$, is nonempty compact convex set. Furthermore, for every $d_x \in C(x^*)$ where $C(x^*)$ is defined by (3.3),

$$\max_{(u,v)\in\Lambda(x^*)} \left\{ \left(\left[\sum_{j=1}^{n_1} u_i \nabla_{xx}^2 H_j(x^*) + \sum_{i=1}^{n_2} v_i \nabla_{xx}^2 G_i(x^*) \right] d_x, d_x \right) \right\}$$

$$+ \left\langle \left[\nabla_{xx}^2 \mathcal{L}(x^*; y^*, \mu^*, \lambda^*) - N(x^*)^T K(x^*)^{-1} N(x^*) \right] d_x, d_x \right\rangle \ge 0,$$

$$(3.7)$$

where K(x) is defined by (2.6) and N(x) is defined by

$$N(x) = \begin{bmatrix} \nabla_{x,y}^2 \mathcal{L}(x, y(x)\mu(x), \lambda(x)) \\ 0 \\ \mathcal{J}_x h(x, y(x)) \\ \mathcal{J}_x g(x, y(x)) \end{bmatrix}. \tag{3.8}$$

Artificial Intelligence

微信关注 北京智源人工智能研究院