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Multimodal Intelligence: Representation Learning,
Information Fusion, and Applications

Chao Zhang ¥, Zichao Yang, Xiaodong He

Abstract—Deep learning methods haverevolutionized speech
recognition, image recognition, and natural language processing
since 2010, Each of these tasks involves a single modality in their
input signals. However, many applications in the artificial intel-
ligence field involve multiple modalities. Therefore, it is of broad
interest to study the more difficult and complex problem of mod-
eling and learning across multiple modalities. In this paper, we
provide a technical review of available models and learning meth-
ods for multimodal intelligence. The main focus of this review is the
combination of vision and natural language modalities, which has
become an important topic in both the computer vision and natural
language processing research communities. This review provides a
comprehensive analysis of recent works on multimodal deep learn-
ing from three perspectives: learning multimodal representations,
fusing multimodal signals at various levels, and multimodal appli-
cations. Regarding multimodal representation learning, we review
the key concepts of embedding, which unify multimodal signals
into a single vector space and thereby enable cross-modality signal
processing. We also review the properties of many types of em-
beddings that are constructed and learned for general downstream
tasks. Regarding multimodal fusion, this review focuses on special
architectures for the integration of representations of unimodal
signals for a particular task. Regarding applications, selected areas
of a broad interest in the current literature are covered, including
image-to-text caption generation, text-to-image generation, and
visual question answering. We believe that this review will facilitate
future studies in the emerging field of multimodal intelligence for
related communities.

Index  Terms—Multimodality, representation, multimodal
fusion, deep learning, embedding, speech, vision, natural
language, caption generation, texi-to-image generation, visual
question answering, visual reasoning.

I. INTRODUCTION

IGNIFICANT progress has been made in the field of
S machine learning in recent years based on the rapid de-
velopment of deep learning algorithms [1]-[6]. The first ma-
jor milestone was a significant increase in the accuracy of
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large-scale automatic speech recognition based. on the use of
fully connected deep neural networks (DNNs) and deep auto-
encoders around 2010 [7]-[17]. Shortly thereafter, a series of
breakthroughs was achieved in computer vision (CV) using deep
convolutional neural network (CNN) models [ 18] for large-scale
image classification around 2012 [19]-[22] and large-scale ob-
ject detection around 2014 [23]-[25]. All of these milestones
have been achieved for pattern recognition with a single input
maodality. In natural language processing (NLP), recurrent neural
network (RNN) based semantic slot filling methods [26] have
achieved state-of-the-art for spoken language understanding.
RNN-encoder-decoder models with attention mechanisms [27],
which are also referred to as sequence-to-sequence models [28],
have achieved superior performance for machine translation in
an end-to-end fashion [29], [30]. For additional NLP tasks with
small amounts of training data, such as question answering (QA)
and machine reading comprehension, generative pre-training
has achieved state-of-the-art results [31]-[33]. This method
transfers parameters from a language model (LM) pre-trained
on a large out-of-domain dataset using unsupervised training
or self-training, which is followed by fine-tuning on small in-
domain datasets.

Although there have been significant advances in vision,
speech. and language processing, many problems in the artificial
intelligence field involve more than one input modality, such
as intelligent personal assistant systems that must understand
human communication based on spoken words, body language,
and pictorial languages [34]. Therefore, it is of broad inter-
est to study modeling and training approaches across multiple
modalities [35]. Based on advances in image processing and lan-
guage understanding [36], tasks combining images and text have
attracted significant attention, including visual-based referred
expression understanding and phrase localization [37]-[39], as
well as image and video captioning [40]-[45], visual QA (VQA)
[46]-[48], text-to-image generation [49]-[51], and visual-and-
language navigation [52]. In these tasks, natural language plays
a key role in helping machines in “understanding” the content of
images, where “understanding™ means capturing the underlying
correlations between the semantics embedded in languages and
the visual features obtained from images. In addition to text,
vision can also be combined with speech to perform audio-visual
speech recognition [53]-{55], speaker recognition [56]-[58],
speaker diarization, [59], [60], as well as speech separation [61],
[62] and enhancement [63].

This paper provides atechnical review of the models and train-
ing methods used for multimodal intelligence. Our main focus

1932-4553 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Model /
# Reference Affiliation Date Accuracy[%]
1 JDReader JD Al Research March 74.3
(ensemble) 2019
2 DynSAN Samsung Research March 73.8
(ensemble) (SRC-B) 2019
3 DynSAN basic Samsung Research February 714
(single) (SRC-B) 2019
4 Entity-GCN v2 University of November 71.2
(ensemble) Amsterdam && 2018
University of
Edinburgh
5 HDEGraph JD Al Research February 70.9
2019
6 CFC Salesforce Research  September 70.6
2018
7 [anonymized] [anonymized] November 69.6
2018
8 [anonymized] [anonymized] February 69.1
2019
9 BAG University of March 69.0
Sydney 2019
10 [anonymized] [anonymized] September 67.6
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